Покажем эквивалентность неравенств \(|a| \leq b\) и \(-b \leq a \leq b\), где a - произвольное вещественно число и b - произвольное положительное вещественное число.

По определению

\(|a| = \begin{cases}a, & a\geq 0 \\ -a, & a<0\end{cases}\)

1) Рассмотрим случай \(a\geq 0\).

\(|a| \leq b, |a|=a \Rightarrow a\leq b\)

\(a \geq b, b \geq 0 \Rightarrow a\geq -b, b\geq 0\)

\(-b\leq a \leq b\)

 

Добавить комментарий


Защитный код
Обновить

Возможно, Вам нужно вот это: